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Abstract. We consider the symmetry group inherent in two-dimensional triangle and honeycomb lattice
systems. We find analytically and numerically the character of the reducible representation for the corre-
sponding Fock space. Using the irreducible characters and the reducible character of the representation,
we decompose the Fock space explicitly. For example, we calculate the multiplicity of each irreducible

representation contained in the Fock space.

PACS. 02.20.-a Group theory — 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

Many numerical methods have been used in order to un-
derstand strongly correlated electron systems. Quantum
Monte Carlo [1], exact diagonalization [2], and density
matrix renormalization group [3] are main methods de-
ployed recently. In the method of exact diagonalization,
the key issue is how to handle symmetries embedded in
systems. The reason for analyzing symmetries is that us-
ing them we find not only quantum numbers of the sys-
tems, but also we can block-diagonalize the Hamiltonian
matrix. The best way to study symmetries would be to
apply group representation theory to the Hilbert space.

There are concrete mathematical studies of group
theory for translation, rotation, and reflection symme-
tries. The corresponding symmetry groups are called plane
group [4] and space group [5] for two and three-dimensional
lattice systems, respectively. It is known that plane group
is classified into 17 different groups, and there are 230
space groups [6].

In group representation theory [7], the main concern is
to find all irreducible components. Sometimes it is mean-
ingful to calculate a reducible representation as far as
the corresponding space is physically important. The Fock
space is a basic Hilbert space for strongly correlated sys-
tems, and therefore, it is worthwhile to consider the re-
ducible representation for the Fock space.

The authors considered a two-dimensional square lat-
tice system without focusing on a specific model in the
previous paper [8]. The corresponding symmetry group
is pdmm in the crystallographic notation [5]. Using ir-
reducible representations of the group and the reducible
representation of the Fock space, the Fock space is de-
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composed into the irreducible components. As a result,
we found the dimensions of the Hamiltonian submatrix,
which correspond to multiplicities.

Beyond the square lattice system, it is necessary to
analyze the triangle lattice systems in order to study the
nature of the Wigner crystal [9]. Recently the seminal ex-
periment [10] attracts many interests on graphene, which
is one of honeycomb lattice systems. It is essential to in-
vestigate the plane group embedded in the triangle and
honeycomb lattice systems.

In this paper, we present a thorough procedure of in-
vestigating the triangle and honeycomb lattice systems.
Doing so, we show the relation between the triangle lat-
tice and the honeycomb lattice.

This paper is organized as follows. We introduce the
symmetry group, p6mm, involved in two-dimensional tri-
angle lattice. We also find that two-dimensional honey-
comb lattice system has the same symmetry group as that
of triangle. We present the irreducible characters of the
group in Section 3, and we find the reducible character
of the Fock space in Section 4. In Section 5, for exam-
ple, we calculate the multiplicities of the irreducible rep-
resentations of the Fock space in two cases of triangle and
honeycomb lattices. We make a conclusion in Section 6.

2 Symmetries in triangle and honeycomb
lattice systems

A two-dimensional lattice system has several symmetries,
which are translation, rotation and reflection. In order to
understand the symmetries in lattice systems, we present
lattice points using integer multiples of the two unit basis
vectors.
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Fig. 1. The unit basis vectors z and y are presented in a
triangle lattice system. The bold lines represent the boundary
for the periodicity of N = 3. It is shown that the periodicity
along the direction of x + y is N, while the periodicity along
the direction of x and y is 3N.

2.1 Triangle

We begin by considering the triangle lattice system first.
We use two unit vectors x and y to present lattice points.
As shown in Figure 1, we use y, which is tilted by 60° with
respect to x. Now each position is represented by a vector
ix + jy with two integers 7 and j.

Let us denote T, and T, for the translation by one
lattice site in the x and y direction, respectively. For 60°
counterclockwise rotation about the origin, we use Cg. For
the reflections about the six axes, we use 0, 0z1y, 0y,
0—z+2y) O—a+y; O—2z+y-

Explicitly these operators act on sites as follows:

Tp(iz + jy) = (i + 1)z + jy, (1)
Ty(iz + jy) = 1w+ (j + L)y, (2)
Cs(iz + jy) = —jo + (i + j)y, (3)
ox(iz + jy) = (i + j)z — jy. (4)

We note that the other reflection operators are written in
terms of Cg and o, as

Opty = Co04, (5)
Oy = 0620$7 (6)
O—z42y = Cgax, (7)
O—gty = Cgawv (8)
O—2z+y = 065‘796- 9)

In order to make the system finite, we impose the bound-
ary condition, with which T, and T, satisfy

NmN _ 3N _ 3N _
T, T, =1, and T,;7 =T," =1 (10)

as explained in Figure 1. Here we define T;
T, = T,T,, and T = 1. (11)

In this boundary condition, it is important to note that
the number of lattice sites is given by 3N2. To see this,

=1/3 x+1/3 v

£
bt

Fig. 2. In addition to the basis vectors = and y from the origin

o, the center of the triangle is represented by p.

we note that 1+1x6+2x64---4 (N —1) x 6 for inside,
(N —1) x 6/2 for six border lines, and 6/3 for six corner
points of the boundary. Thus, we find that 14+ (N —1)N x
3+ (N —1) x 342 = 3N2. If we consider the system of M
fermions, the dimension of the corresponding Fock space
is given by 352Chr, where 3N? is the number of sites.

We note that rotation and reflection symmetries
around any point p = ax + by can be represented by
the combination of the rotation and reflection about the
origin and translations. Let O be an operator represent-
ing a rotation or a reflection about the origin. Then any
such operator about p can be written as TpOTp*1 =Ty0
where p’ = T,0(—p). For example, let us choose p as a
center of some triangle, say, p = %x + %y as shown in
Figure 2. Then, the rotation by 60° about p is written
as TpC(;Tp_1 = T,Cs with p/ = %x — %y Since, T} is
not our legitimate translation, 60° rotation about p is not
our symmetry. On the other hand, the rotation by 120°
around the point p is TI,C(%TP_1 = T, Cg where p' = z.
Therefore it belongs to our symmetry. Similarly the re-
flection about the line passing through p and y is written
as Tpo_gi0y Tyt = Tpyo 40y with p' = .

Therefore any operator representing the symmetry op-
eration can be written as a product of some combination
of Ty, Ty, Cs, 0. Thus, Ty, Ty = Tpqy =TTy, Cs, 0y
are generators of our symmetry group.

It is easy to verify the following commutation relations
between the generators:

0,Cs = C{?O’x, 12

(12)
o, Ty = T3TN oy, (13)
02Ty = Tp0z, (14)
CeTy = T3N3T2Cy, (15)
CeT, = T3N 7T, Cs, (16)
T, T, = T,T;. (17)

Using the four generators T, T3, Cg, 0, with the above
commutation relations, our symmetry group is written as

G:{T?Ttncgo—g|m:0aa
p:()’...’

3N —Lin =0,
5;(1:071};

N —1;
(18)

where T3V = TN = C§ = ¢2 = 1. This group is exactly
identical to the wallpaper group, p6mm.



B. Kim and M.-H. Chung: Decomposition of the Fock space... 69

Fig. 3. The solid and dotted lines represent the honeycomb
and triangle lattice systems, respectively. Note that the center
of each triangle corresponds to a vertex of some hexagon and
vice versa.

2.2 Honeycomb

We now consider the honeycomb lattice system. As shown
in Figure 3, we first note that in the triangle lattice the
collection of the centers of all the triangles forms the hon-
eycomb lattice. We use the same coordinates using the
two unit vectors z and y as in the triangle lattice shown
in Figure 1. Obviously here Cg and o, are symmetries of
our honeycomb lattice too. We show that these two sym-
metries with translations can generate all the symmetries
inherent in the honeycomb lattice. For example in Fig-
ure 4, the reflection o; about the line passing through the
origin and ¢ = x+y can be written as o0y = Cg0,. The sym-
metries about any vertex of a hexagon in the lattice can
be also shown to be generated by Cg, 0, and translations.
For example, let w = — %x—i— %y and the 60° rotation about
this point be Cg 4. Then Cq,, = T, CeTy, = T T, Co,
which is not a member of our symmetry. However, the
symmetry Céw can be shown to be Céw = T,C2. The
reflection o about the line passing through w and ¢t + w
can be written as

oy = Tywo Ty =T, "Tyoy = T, ' T, Co0, (19)
as shown in Figure 4.

Therefore we conclude that {T,T,,Cs, 0.} are the
generators of our symmetry group in the honeycomb lat-
tice. We find that the symmetry group for the honeycomb
lattice is the same as that for the triangle lattice. To see
this more easily, we note that whenever all the vertices go
to vertices in an isometric fashion, then all the centers go
to centers in the same way.

We assume the same boundary condition for the hon-
eycomb lattice as that for the triangle lattice (see Fig. 1).
Each block has 6(1+345+---) =631 | (2k—1) = 6N?
triangles or centers of triangles which are the sites of our
honeycomb lattice.

3 Irreducible representations

The irreducible characters of our group are calculated by
using the induced representation method. We find that
the group G = (T}, Ty, Cs,0,) has the order 36 N2. It is
straightforward to obtain all the irreducible characters of

Fig. 4. The rotation Cs and the reflection o, are presented.
The reflection o about the line passing through the origin and
t = x4y, and the reflection oy about the line passing through
w and ¢ 4+ w are shown.

G. The subgroup generated by Cg, o, is isomorphic to the
dihedral group Dg, and the subgroup generated by T, and
T; is isomorphic to Zsy X Zy. Then, G is isomorphic to
a semidirect product of Dg by an abelian group Zsy X
Zy. By applying the standard method of little group in
representation theory of finite groups [11], we get all the
irreducible characters of G.

The following is the list of all the distinct irreducible
characters of G. Here the indices a and b used below play
the role of the wave number in the representation of space

group.

Casel.a=b=0
W, p k. 1-dimensional characters (k,l =0, 1)

o ot (Ty T{ CF o) = (= 1)+ (20)
Y, p,n: 2-dimensional characters with h = 1,2
— 2cos ™2 for g=0
Voo (TPTCo) = {35 =0
Case 2.a=N,b=0
W, .1: 2-dimensional characters (I =0,1)
2cos 2T (—1)!  for p even
mom P g\ _ 3
apu (LT} Coy) {0 for p odd
(22)
¥, p: 4-dimensional characters
4 cos & cos Q’TTm for p even
Vo o(T T CEd) = and ¢ =0
0 otherwise
(23)
Case 3. a=0,b= 4 (N even)

W, b.1,10 3-dimensional characters (k,l =0,1)

Wop k(T T CEod) =

(1 (1) o+ (1
+ (=1)m+2n] forp=0,3,g=0

1)tk + forp=0,3,g=1

)
) 2n i forp=1,4,¢=1
)

forp=2,5,qg=1
otherwise

(—

(—

(-1 m+n+k2z2 41
0

(24)
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Case 4.a=0,1< b < [FA]

W, bk 6-dimensional characters (k= 0,1)
Voo k(T T CG0]) =
2 cos(2Zbn) + 2 cos(2Fb(m + n))
+ 2 cos(2Zb(m + 2n)) forp=0,g=0
2(—1)* cos(3Eb(m + 2n)) forp=1,¢g=1
(25)
2(—1)* cos(3bn) forp=3,¢=1
2(—1)* cos(3Eb(m +n)) forp=5,¢=1
0 otherwise
Case 5.1 <a <[] a#N,b=0
W, bk 6-dimensional characters (k = 0,1)
Va0 k(T T CG o) =
2 cos(Z&-am) + 2 cos(Z&a(m + 3n))

+ 2 cos(2%a(2m + 3n)) for p=0, ¢g=0
2(—1)* cos(2xa(2m + 3n)) for p=0, ¢=1 (26)
2(—1)* cos(3xa(m + 3n)) for p=2, ¢=1
2(—1)" cos( 3% am) for p=4, q=1
0 otherwise

Case 6. 1<a<2b—N-1,[EH]4+1<b<N-1
W, p: 12-dimensional characters

W, (T T CRod) =

2 cos[2Z (am + 3bn)]
+ 2 cos[ 2% ((2a — 3b)m + 3(a — b)n)]
(a —3b)m + 3(a — 2b)n)]

+ 2 cos[ 2% (

+ 2 cos[ 2% (am + 3(a — b)n)] (27)
+ 2 cos[2Z ((a — 3b)m — 3bn))

+ 2 cos[ 2% ((2a — 3b)m + 3(a — 2b)n)]

forp=0,¢g=0
0 otherwise

4 Reducible representation of the Fock space

For a given vector space, in order to calculate a charac-
ter x(g) for an element g of a group G, we set up an
orthonormal basis {|1);}|i € I} for the vector space. Then
the character is given by

X(9) =D _(Wilgl).

icl

(28)

The relevant group G we consider here has the genera-
tors (T, Ty, Cs, 0,). We can describe the lattice sites as

ix + jy with two integers i, j for the triangle lattice, and
ix + jy £ w for the honeycomb lattice. The vector space
here is the Fock space, where we denote the fundamental
creation operators defined in the triangle and the honey-

comb lattice as ¢! and ¢!

izt gy respectively.

izt+jytw’

4.1 Triangle

For the translation, as we see in Figure 1, it is assumed
that the creation operators satisfy the periodic boundary
condition
e =cf o
ix+jy (i+N)z+(G+N)y
(29)
The elementary symmetry operators are related to the
creation operators as follows:

= CT = CT
(i+3N)atjy ~ Cizt+(j+3N)y

T, cwﬂy = cJ(rHl)ijTx, (30)
Tyclot sy = s oy T (31)
CGCW-H!! - ]:J1+(1+])1/C (32)
amc;f£+jy = cJ(ri_H,)x_jyaz, (33)
0) = TLJ0) = T[0) = Gol0) = 020}, (34)

From these relations between creation operators and sym-
metry operators, we determine how the operators act on
the M fermion Fock space.

We note that one (hexagon-looking) block of the 3N?
lattice sites in Figure 1 is equivalent to the parallelogram
of the 3N x N sites {ix+jt|i =0,---,3N—-1;7=0,---,N—
1} where t = x 4+ y by using the boundary condition.

The Fock space F consists of M fermions living in

3N x N sites. We let cwﬂt = cZ ;» and find the basis of

the Fock space as

F= Span{q1 PR c;fM jM|0)|i1N—|—j1 < <iyN+jm},
(35)

where 0 <4 <3N —1,and 0 < j, < N — 1.
For the calculation of the character x(g), we first con-
sider so called g-orbits which are written as

Oi ;= 14'(c]
:

where g(c;r j) = c;r/ J which satisfies gc; ; = c;r/ 9 from
the given commutation relations above between group el-
ements and creation operators. As we emphasize in the
previous paper [8], the key observation is that

D=0,1,2,3,---}, (36)

<O|CiM v G ga |9|C;rl g1 'C']L'LM jM|0> ==+l (37)
holds if and only if the set, {cZ PR c;rM ju J» 18 adisjoint

union of the g-orbits, O;, ;, U ia jar- 1he main point
here is that given g € G the Character x(g) is determined
by the number of its orbits and their sizes.

In order to find x(g), we now analyze the orbits gen-
erated by g = T'"T*CEc? € G in the 3N x N sites in the
triangle lattice.
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Let us present here a typical procedure to find x(g)
as an example for the case of, say, ¢ = 1, p = 1. Let
g =T"I]'Cso,. Then,

N

_ 2/ 1
9(ci j) = livm, ivjin 97 (¢ 5) = ¢4 y+m+2nv

T

3
3.y T
g (ci j) = Citm, itj+m+3n 9 ( ]) z ]+2(m+2n)’
95(02r I]) =
Z, ged(r,s) = 1.
3N?

_ T
i) =Clitm, ititamtsns 9 °(c Ci, j43(m+2n)’

Let e =

If s is even, g?*(c

m+2n,0<e <N, ¢ =
;rj) = c;r ‘End we have =5—
size 2s and the trace is (fl)Z sy CM if v = 0 and the

trace is 0 if v = 1 where - 2u +v. If s is odd, let
s=204+1(=0,1,---). Then gs(c;rj) = c ; for those
(i,7) which satisfy the equations i = —i +m + 3aN and
j=i+j+Iim+ (214 1)n+ BN for some integer « and
B. As a result, we find that there is just one i = (m +
3aN)/2 = =GN —Im — (2l + 1)n, from which we obtain
(2l4+1)(m+2n) = N(—20—3«) as a consistency equation.
Therefore, there are N solutions, (g, j) where 7 runs from
0 to N — 1. Furthermore, ng(cjj) =

orbits of

; for any (4, j).

Therefore there are % orbits of size s and N(% orbits
of size 2s. The trace is then
u
Z(—l)(u_k) N@BN-1) Cu_k ﬂc2k+'u- (38)
2s s

k=0

For other cases of ¢ and p, the procedures are not different
from the above case. We present here the summary of
the characters of the reducible representation of our Fock
space with M-fermions. As usual, we use the convention
that 4Cg =0if A< B or B <0.

Case 1.q=0,p=0

IN = %v N = Z_iv ged(ri, s1) = ged(ra, s2) = 1,s =
lem(sy, s2)
—1)¥ 6D e O if s|M
TmnYy — ( N M 39
XTI {O otherwise (39)
Case 2. ¢q=0,p=1,5
f=Nmod2 M=6t+r,0<r<5.
X(T" T Cs) = X(szTtan) =
(=1 x2Cy if f=0,7r=0
(*]-)15 N272Ct iff:(), T:1,4
2
0 o if f=0,r=3
-1 C if f=0,r=2,5
( ) N2-2 f (40)
(*]—)t N22—1 Cy 1ff = ]., r= 0,1
(_1)t+1 N2 1Ct 1ff: 1, r = 2,3
2
0 if f=1,r=4,5

Case 3.¢q=0,p=2,4

M=3t+r, 0<r<2.

X(T;nTtncg) = X(T;nTtnCél) =
NQCt ifr=0
3 nv2_1Cy if r =1,2 and if 3|m (41)
0 otherwise

Case4.q=0,p=3
f = Nmod2, g =
r,r= 0,1.

mmod2, h = nmod2, M = 2t +

X(T]'TCY) =
(—=1)*
+6(—1)"" g2 4 Coy
+(~1)'2 4224 Gy
A1) w2 a Gy
(1)
(—1)! ay2 Cy

3N2_4 Ct

if f=g=h=r=0

. (42)
lff:g:h:()’r:l

if f=0,gorh=1,7r=0

if f=0,gorh=1,r=1
if f=1

1
3N2_4 Ct—l
—z

(_1)t 3sz1 Ct

Case 5. ¢ =1, p:0

2m +3n =e, 55 = %, ged(r,s) = 1, h = smod2,% =
2u + .
X1 T o) =
(- )JNQCM ifth=0,v=0
Zk o( 1)) avov—n) Oy gy ax Copo i h =1 (43)
& otherwise
Case 6.gq=1,p=1
m+ 2n = e, % = %,gcd(r,s) =1,h = smon,% =
2u + .
X1 Ceo) =
(-1 sv2 O ifth=0,v=0
25 s
oD@ yon 0 Coypy nCopgy iFh=1 (44)
2s s
0 otherwise

Case 7.q=1,p=2
m+3n =e, 3% = L, ged(r,s) = 1, h = smon,% =

» 3N
2u +v.
XTI T CEo) =
(—1)2+ 3N202M ifh=0,0=0
S0 (1)@ gnn 1) Cyrgy an Copyy ifh =1 (45)
2s s
0 otherwise
Case 8.q=1,p=3
n=e, &="= ,gcd(r s) =1, h=smod2, & = 2u+v.
XTI Co) =
(—1)% 532Cp ifh=0,v=0
2s s
o (=D van 1) Cug v Copyy ifR=1  (46)
2s s

0 otherwise
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Case 9.q=1,p=4
m=e, 35 = %, ged(r,5) =1, h = smod 2,

% =2u+w.
X(T;“Tt"ng) =
( 1)29 3N2C]\/I ifhzO,sz
Zzo(fl)éffm’? 0 Cukon Copyy ifh=1  (47)
0 ” otherwise

Case 10.¢g=1,p=5
€

m+n=e, ==, ged(r,s) =1, h=smod?2,
M =2u +v.
S

X(T;;nTtano') =
ifh=0,v=0
ifh=1

0 otherwise

( 1)29 3N2 CM

2s

k
11:70 ( 1 ) (Jz;(zN)—l) CU—k{TV CQk-{-v

(48)

4.2 Honeycomb

We have to use three integers when we describe creation
operators for the Fock space in the honeycomb lattice sys-
tem, where the number of sites is given by 3N x N x 2. As
in the previous section we use three vectors z, t = x 4+ y
and w = —gx + 3y, and we let CIHJH(% Dw = c;rj &
(k = 0,1). Then, we find the basis of the Fock space F
with M fermions as

F = Span{c! [0)|é12N + §12 + k1

(49)

“Cinm Jm knm

<o < iM2N F a2+ k)

i1 g1 k1

where 0 <4 <3N—-1,and0< j; < N—1,and 0 < k; < 1.

Here the idea using orbits is the same as the case of
triangle when we calculate the character x(g). Instead of
analytic formula, we do numerical calculation for the or-
bits using the computer. The numerical results are used
when we find multiplicities in the next section.

5 Multiplicity calculation

For the group G = (T,,T:,Cs,0,), we have found the
irreducible representations and the reducible characters
of the Fock space. Using these characters, we calculate
multiplicities for the corresponding irreducible sectors.
We simply present the multiplicities of the six cases
of the irreducible representations which were given in the
previous section. We denote the multiplicity of a given
irreducible representation ¥ by u(¥).
Example 1: Triangle lattice system with N =4, M = 8.

Casel.a=b=0
W, bk 1-dimensional characters (k,l = 0,1)

/L(Lpoy(),oy()) = 655906, N(WO,O,LO) = 654851,
M(WO7O,O71) = 6557427 M(WO7O,171) = 654277.

W, b.n: 2-dimensional characters with A = 1,2
/J/(W0,0J) = 1309079, ,LL(WQ,QQ) = 1311592.

Case 2.a=N,b=0

W, .1: 2-dimensional characters (I =0, 1)

1(Wa0,0) = 1310757, (W4,0,1) = 1310019.
¥, p: 4-dimensional characters
1(Py0) = 2620671,

Case 3. a=0,b= 4 (N even)
W, b1, 3-dimensional characters (k,l =0,1)

(1(P2.0,0) = 1964838, 11(Wy 2.1.0) = 1966580,
11(Wo 2.0.1) = 1964670, (o211 ) = 1966008.

IR ]

Case 4.a=0,1<b< [
W, pk: 6-dimensional characters (k = 0,1)

1(Po,1,0) = 3930388, u(Wo,1,1) = 3930828.

Case 5. 1 <a <[] a# N, b=0
W, .5 6-dimensional characters (k =0, 1)

(W1.0.0) = 3930972, u(¥10.1) =
(W2,0,0) = 3931418, ju(P20,1) = 3930678,
E%,o,o) = 3930972, NE%’O lg

)

U
U
1
1(¥s,0,0) = 3930972, u(¥s 0,1

Case 6. 1<a<2b—N-1,[EH]+1<b<N-1
¥, p: 12-dimensional characters

pw(¥,3) = 7861216.

To check the consistency, the following equation must
hold:

> dim(W) x p(@).

o

We note the consistency with equation (50):

3N2 C]\/[ - (50)

5.42Cg = 377348994
= 1 x (655906 + 654851 4 655742 + 654277)

+2 x (1309079 + 1311592)

+2 x (1310757 + 1310019)

+4 % (2620671)

+3 x (1964838 + 1966580 + 1964670 + 1966008)

+6 x (3930388 + 3930828)

+6 x (3930972 + 3930244 + 3931418 + 3930678
+ 3930972 + 3930244 + 3930972 + 3930244)

+12 x (7861216). (51)

m~ o~~~ o~ o~

Example 2: Honeycomb lattice system with N = 4,
M =38.

Casel.a=b=0
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W, bk 1-dimensional characters (k,l = 0,1)
,UI(WO,O,O,O) = 230220931, N(WO,O,LO) = 230209731,
1(Wo001) = 230234043, 1(Wo 0.1.1) = 230180383.

W, b.ht 2-dimensional characters with A = 1,2

/J/(W0,0J) = 460389649, ,LL(WQ,QQ) = 460454509.

Case 2.a=N,b=0

W, p: 2-dimensional characters (I = 0,1)

1(Wa0,0) = 460430197, (W4 0,1) = 460413961.
¥, »: 4-dimensional characters
,u(ﬂl,o) = 920844623.

Case 3.a=0,b= & (N even)

W, b.k,10 3-dimensional characters (k,l =0,1)

(W 2,0,0) = 690626776, 11(Pp 2,1,0) = 690648000,
1(Wo 2,0,1) = 690639880, 1(Pp 2,1,1) = 690618656.
Case 4.a =0, 1 <b <[]

W, bk 6-dimensional characters (k= 0,1)

1(Wo1,0) = 1381237264, 11(¥p 1,1) = 1381279856.

Case 5.1 <a <[] a#N,b=0

W, bk 6-dimensional characters (k= 0,1)

(1(P0.0) = 1381266656, 11(¥1 0.1) = 1381250464,
pw(W2,0,0) = 1381274776, M(%,m) = 1381258536,
1(¥3,0,0) = 1381266656, 1(¥3,0,1) = 1381250464,
w(Ws,0.0) = 1381266656, 1(Ps,0.1) = 1381250464.
+

Case 6.1 <a<2b— N
W, »: 12-dimensional characters

u(¥3) = 2762517120.

1<b<N-1

We should also check the consistency:

6.42Cs = 132601016340
x (230220931 + 230209731
+ 230234043 + 230180383)
+2 % (460389649 + 460454509)
+2 x (460430197 + 460413961)
+4 x (920844623)
+3 x (690626776 4 690648000
+ 690639880 + 690618656)
+6 x (1381237264 + 1381279856)
+6 x (1381266656 + 1381250464
+ 1381274776 + 1381258536
+ 1381266656 + 1381250464
+ 1381266656 + 1381250464)
+12 x (2762517120). (52)

This multiplicity is the dimension of the Hamiltonian sub-
matrix, which should be diagonalized by some method be-
yond group theory in exact diagonalization. We emphasize
that the structure of the quantum numbers for the hon-
eycomb lattice system is exactly the same as that for the
triangle lattice system.

6 Conclusion

We have considered a many particle system related with
the plane group, p6mm. The corresponding symmetry
group is isomorphic to a semidirect product of dihedral
group Dg and an abelian group Zsy x Zy. By finding
the irreducible representations of the group, we can assign
quantum numbers to a many particle system. We also find
the reducible characters for the M-fermion Fock space.
Using the irreducible representations and the reducible
characters, we find multiplicities by calculating the inner
product between irreducible and reducible characters. We
check the consistency of the dimensions.

This basic approach to symmetries in this paper will
be useful in many exact diagonalization studies [12-17].
This work will be useful to study graphene, where the
fractional quantum Hall effect is observed [18]. Our work
can be extended to the case of three-dimensional lattice
systems. It will not be difficult to find multiplicities of the
Fock space for three-dimensional lattice systems.

This work was done when one of the authors (M.H.C.) visited
to KIAS.
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